Wednesday, February 1, 2012

1201.2832 (Cristiano Nisoli)

On thermalization of magnetic nano-arrays at fabrication    [PDF]

Cristiano Nisoli
We propose a model to predict and control the statistical ensemble of
magnetic degrees of freedom in Artificial Spin Ice (ASI) during thermalized
adiabatic growth. We predict that as-grown arrays are controlled by the
temperature at fabrication and by their lattice constant, and that they can be
described by an effective temperature. If the geometry is conducive to a phase
transition, then the lowest temperature phase is accessed in arrays of lattice
constant smaller than a critical value, which depends on the temperature at
deposition. Alternatively, for arrays of equal lattice constant, there is a
temperature threshold at deposition and the lowest temperature phase is
accessed for fabrication temperatures {\it larger rather than smaller} than
this temperature threshold. Finally we show how to define and control the
effective temperature of the as-grown array and how to measure critical
exponents directly. We discuss the role of kinetics at the critical point, and
applications to experiments, in particular to as-grown thermalized square ASI,
and to magnetic monopole crystallization in as-grown honeycomb ASI.
View original: http://arxiv.org/abs/1201.2832

No comments:

Post a Comment