Tuesday, February 7, 2012

1202.0890 (N. L. Chung et al.)

Non-equilibrium spatial distribution of Rashba spin torque in
ferromagnetic metal layer
   [PDF]

N. L. Chung, M. B. A. Jalil, S. G. Tan
We study the spatial distribution of spin torque induced by a strong Rashba
spin-orbit coupling (RSOC) in a ferromagnetic (FM) metal layer, using the
Keldysh non-equilibrium Green's function method. In the presence of the s-d
interaction between the non-equilibrium conduction electrons and the local
magnetic moments, the RSOC effect induces a torque on the moments, which we
term as the Rashba spin torque.
A correlation between the Rashba spin torque and the spatial spin current is
presented in this work, clearly mapping the spatial distribution of Rashba Spin
torque in a nano-sized ferromagnetic device. When local magnetism is turned on,
the out-of-plane (Sz) Spin Hall effect (SHE) is disrupted, but rather
unexpectedly an in-plane (Sy) SHE is detected. We also study the effect of
Rashba strength (\alpha_R) and splitting exchange (\Delta) on the
non-equilibrium Rashba spin torque averaged over the device. Rashba spin torque
allows an efficient transfer of spin momentum such that a typical switching
field of 20 mT can be attained with a low current density of less than 10^6
A/cm^2.
View original: http://arxiv.org/abs/1202.0890

No comments:

Post a Comment