Tuesday, March 6, 2012

1203.0743 (Seung Hoon Lee et al.)

Switching teraherz waves with gate-controlled active graphene
metamaterials
   [PDF]

Seung Hoon Lee, Muhan Choi, Teun-Teun Kim, Seungwoo Lee, Ming Liu, Xiaobo Yin, Hong Kyw Choi, Seung S. Lee, Choon-Gi Choi, Sung-Yool Choi, Xiang Zhang, Bumki Min
The extraordinary electronic properties of graphene, such as its continuously gate-variable ambipolar field effect and the resulting steep change in resistivity, provided the main thrusts for the rapid advance of graphene electronics. The gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of low-energy photons with massless Dirac fermions, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications due to its nonresonant Drude-like behaviour. Here, we experimentally demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional artificial material, referred to as a metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances and the corresponding field enhancement in the metamaterial. Although the thickness of the embedded single-layer graphene is more than 'six' orders of magnitude smaller than the wavelength (< {\lambda}/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 90 per cent and its phase by more than 40 degrees at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, especially when fabricated with multilayer graphene, which is indicative of persistent photonic memory effects.
View original: http://arxiv.org/abs/1203.0743

No comments:

Post a Comment