Thursday, April 26, 2012

1204.5597 (Carlos Echeverría-Arrondo et al.)

Spin freezing by Anderson localization in one-dimensional semiconductors    [PDF]

Carlos Echeverría-Arrondo, E. Ya. Sherman
One-dimensional quantum wires are considered as prospective elements for spin transport and manipulation in spintronics. We study spin dynamics in semiconductor GaAs-like nanowires with disorder and spin-orbit interaction by using a rotation in the spin subspace gauging away the spin-orbit field. If the disorder is sufficiently strong, the spin density after a relatively short relaxation time reaches a plateau. This effect is a manifestation of the Anderson localization and depends in a universal way on the disorder and the spin-orbit coupling strength. As a result, at a given disorder, semiconductor nanowires can permit a long-term spin polarization tunable with the spin-orbit interactions.
View original: http://arxiv.org/abs/1204.5597

No comments:

Post a Comment