Marc Ganzhorn, Wolfgang Wernsdorfer
We demonstrate the effect of single-electron tunneling (SET) through a carbon nanotube quantum dot on its nanomechanical motion. We find that the frequency response and the dissipation of the nanoelectromechanical system (NEMS) to SET strongly depends on the electronic environment of the quantum dot, in particular on the total dot capacitance and the tunnel coupling to the metal contacts. Our findings suggest that one could achieve quality factors of 10$^{6}$ or higher by choosing appropriate gate dielectrics and/or by improving the tunnel coupling to the leads.
View original:
http://arxiv.org/abs/1205.2009
No comments:
Post a Comment