Tuesday, June 19, 2012

1206.3848 (Alexander S. Mayorov et al.)

How close can one approach the Dirac point in graphene experimentally?    [PDF]

Alexander S. Mayorov, Daniel C. Elias, Ivan S. Mukhin, Sergey V. Morozov, Leonid A. Ponomarenko, Kostya S. Novoselov, A. K. Geim, Roman V. Gorbachev
The above question is frequently asked by theorists who are interested in graphene as a model system, especially in context of relativistic quantum physics. We offer an experimental answer by describing electron transport in suspended devices with carrier mobilities of several 10^6 cm^2V^-1s^-1 and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge inhomogeneity is as low as \approx10^8 cm^-2, allowing a neutral state with a few charge carriers per entire micron-scale device. Above liquid helium temperatures, the electronic properties of such devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a possible bandgap.
View original: http://arxiv.org/abs/1206.3848

No comments:

Post a Comment