Viktor Krueckl, Klaus Richter
We analyze the effect of weak localization (WL) and weak antilocalization (WAL) in the electronic transport through HgTe/CdTe quantum wells. We show that for increasing Fermi energy the magnetoconductance of a diffusive system with inverted band ordering features a transition from WL to WAL and back, if spin-orbit interactions from bulk and structure inversion asymmetry can be neglected. This, and an additional splitting in the magnetoconductance profile, is a signature of the Berry phase arising for inverted band ordering and not present in heterostructures with conventional ordering. In presence of spin-orbit interaction both band topologies exhibit WAL, which is distinctly energy dependent solely for quantum wells with inverted band ordering. This can be explained by an energy-dependent decomposition of the Hamiltonian into two blocks.
View original:
http://arxiv.org/abs/1207.1294
No comments:
Post a Comment