Monday, October 8, 2012

1210.1587 (Mir Vahid Hosseini et al.)

Unconventional superconducting states of interlayer pairing in bilayer
and trilayer graphene
   [PDF]

Mir Vahid Hosseini, Malek Zareyan
We develop a theory for interlayer pairing of chiral electrons in graphene materials which results in an unconventional superconducting (S) state with s-wave spin-triplet order parameter. In a pure bilayer graphene, this superconductivity exhibits a gapless property with an exotic effect of temperature-induced condensation causing an increase of the pairing amplitude (PA) with increasing temperature. We find that a finite doping opens a gap in the excitation spectrum and weakens this anomalous temperature-dependence. We further explore the possibility of realizing variety of pairing patterns with different topologies of the Fermi surface, by tuning the difference in the doping of the two layers. In trillayer graphene, the interlayer superconductivity is characterized by a two components order parameter which can be used to define two distinct phases in which only one of the components is non vanishing. For ABA stacking the stable state is determined by a competition between these two phases. By varying the relative amplitude of the corresponding coupling strenghes, a first order phase transition can occur between these two phases. For ABC stacking, we find that the two phases coexist with a possibility of a similar phase transition which turns out to be second order.
View original: http://arxiv.org/abs/1210.1587

No comments:

Post a Comment