V. Perebeinos, J. Tersoff, Ph. Avouris
Conduction between graphene layers is suppressed by momentum conservation whenever the layer stacking has a rotation. Here we show that phonon scattering plays a crucial role in facilitating interlayer conduction. The resulting dependence on orientation is radically different than previously expected, and far more favorable for device applications. At low temperatures, we predict diode-like current-voltage characteristics due to a phonon bottleneck. Simple scaling relationships give a good description of the conductance as a function of temperature, doping, rotation angle, and bias voltage, reflecting the dominant role of the interlayer beating phonon mode.
View original:
http://arxiv.org/abs/1211.0559
No comments:
Post a Comment