Mark S. Rudner, Netanel H. Lindner, Erez Berg, Michael Levin
Recently, several authors have investigated topological phenomena in periodically-driven systems of non-interacting particles. These phenomena are identified through analogies between the Floquet spectra of driven systems and the band structures of static Hamiltonians. Intriguingly, these works have revealed that the topological characterization of driven systems is richer than that of static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here we elucidate the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the "anomalous" spectra which arise in driven systems. Possible realizations of these phenomena in solid state and cold atomic systems are discussed.
View original:
http://arxiv.org/abs/1212.3324
No comments:
Post a Comment