Tuesday, December 18, 2012

1212.3775 (Muhammad Imran)

Electron transport through a diatomic molecule    [PDF]

Muhammad Imran
Electron transport through a diatomic molecular tunnel junction shows wave like interference phenomenon. By using Keldysh non-equilibrium Green's function (NEGF) theory, we have explicitly presented current and differential conductance calculation for a diatomic molecular and two isolated atoms (two atoms having zero hybridization between their energy orbital) tunnel junctions. In case of a diatomic molecular tunnel junction, Green's function propagators entering into current and differential conductance formula interfere constructively for a molecular anti-bonding state and destructively for bonding state. Consequently, conductance through a molecular bonding state is suppressed, and to conserve current, conductance through anti-bonding state is enhanced. Therefore, current steps and differential conductance peaks amplitude show asymmetric correspondence between molecular bonding and anti-bonding states. Interestingly, for a diatomic molecule, comprising of two atoms of same energy level, these propagators interfere completely destructively for molecular bonding state and constructively for molecular anti-bonding state. Hence under such condition, a single step or a single peak is shown up in current versus voltage or differential conductance versus voltage studies.
View original: http://arxiv.org/abs/1212.3775

No comments:

Post a Comment