C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, P. Kim
Electrons moving through a spatially periodic lattice potential develop a quantized energy spectrum consisting of discrete Bloch bands. In two dimensions, electrons moving through a magnetic field also develop a quantized energy spectrum, consisting of highly degenerate Landau energy levels. In 1976 Douglas Hofstadter theoretically considered the intersection of these two problems and discovered that 2D electrons subjected to both a magnetic field and a periodic electrostatic potential exhibit a self-similar recursive energy spectrum. Known as Hofstadter's butterfly, this complex spectrum results from a delicate interplay between the characteristic lengths associated with the two quantizing fields, and represents one of the first quantum fractals discovered in physics. In the decades since, experimental attempts to study this effect have been limited by difficulties in reconciling the two length scales. Typical crystalline systems (<1 nm periodicity) require impossibly large magnetic fields to reach the commensurability condition, while in artificially engineered structures (>100 nm), the corresponding fields are too small to completely overcome disorder. Here we demonstrate that moire superlattices arising in bilayer graphene coupled to hexagonal boron nitride provide a nearly ideal-sized periodic modulation, enabling unprecedented experimental access to the fractal spectrum. We confirm that quantum Hall effect features associated with the fractal gaps are described by two integer topological quantum numbers, and report evidence of their recursive structure. Observation of Hofstadter's spectrum in graphene provides the further opportunity to investigate emergent behaviour within a fractal energy landscape in a system with tunable internal degrees of freedom.
View original:
http://arxiv.org/abs/1212.4783
No comments:
Post a Comment