Wednesday, February 27, 2013

1302.6483 (Björn C. Koop et al.)

Resonant state selection in synthetic ferrimagnets    [PDF]

Björn C. Koop, Yuri I. Dzhezherya, Konstantin Demishev, Vadim Iurchuk, Daniel C. Worledge, Vladislav Korenivski
Resonant activation of a synthetic antiferromagnet (SAF) is known to result in a dynamic running state, where the SAF's symmetric spin-flop pair continuously rotates between the two antiparallel ground states of the system, with the two magnetic moments in-phase in the so-called acoustical spin-resonance mode. The symmetry of an ideal SAF does not allow, however, to deterministically select a particular ground state using a resonant excitation. In this work, we study asymmetric SAF's, or synthetic ferrimagnets (SFi), in which the two magnetic particles are different in thickness or are biased asymmetrically with an external field. We show how the magnetic phase space of the system can be reversibly tuned, post-fabrication, between the antiferro- and ferri-magnetic behavior by exploiting these two asymmetry parameters and applying a uniform external field. We observe a splitting of the optical spin-resonance for the two ground states of the SFi system, with a frequency spacing that can be controlled by a quasistatic uniform external field. We demonstrate how the tunable magnetic asymmetry in SFi allows to deterministically select a particular ground state using the splitting of the optical spin-resonance. These results offer a new way of controlling the magnetic state of a spin-flop bilayer, currently used in such large scale applications as magnetic memory.
View original: http://arxiv.org/abs/1302.6483

No comments:

Post a Comment