Wednesday, March 27, 2013

1303.6436 (Albert Prodan et al.)

Nanostructured and Modulated Low-Dimensional Systems    [PDF]

Albert Prodan, Herman J. P. van Midden, Erik Zupanič, Rok Žitko
Charge density wave (CDW) ordering in NbSe3 and the structurally related quasi one-dimensional compounds is reconsidered. Since the modulated ground state is characterized by unstable nano-domains, the structural information obtained from diffraction experiments is to be supplemented by some additional information from a method, able to reveal details on a unit cell level. Low-temperature (LT) scanning tunneling microscopy (STM) can resolve both, the local atomic structure and the superimposed charge density modulation. It is shown that the established model for NbSe3 with two incommensurate (IC) modes, q1 = (0,0.241,0) and q2 = (0.5,0.260,0.5), locked in at T1=144K and T2=59K and separately confined to two of the three available types of bi-capped trigonal prismatic (BCTP) columns, must be modified. The alternative explanation is based on the existence of modulated layered nano-domains and is in good accord with the available LT STM results. These confirm i.a. the presence of both IC modes above the lower CDW transition temperature. Two BCTP columns, belonging to a symmetry-related pair, are as a rule alternatively modulated by the two modes. Such pairs of columns are ordered into unstable layered nano-domains, whose q1 and q2 sub-layers are easily interchanged. The mutually interchangeable sections of the two unstable IC modes keep a temperature dependent long-range ordering. Both modes can formally be replaced by a single highly inharmonic long-period commensurate CDW.
View original: http://arxiv.org/abs/1303.6436

No comments:

Post a Comment