Wednesday, April 10, 2013

1304.2615 (Jens Christian Johannsen et al.)

Direct view on the ultrafast carrier dynamics in graphene    [PDF]

Jens Christian Johannsen, Søren Ulstrup, Federico Cilento, Alberto Crepaldi, Michele Zacchigna, Cephise Cacho, I. C. Edmond Turcu, Emma Springate, Felix Fromm, Christian Raidel, Thomas Seyller, Fulvio Parmigiani, Marco Grioni, Philip Hofmann
The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. While the hot carrier dynamics in graphene could so far only be accessed indirectly, we here present a direct time-resolved view on the Dirac cone by angle-resolved photoemission (ARPES). This allows us to show the quasi-instant thermalisation of the electron gas to a temperature of more than 2000 K; to determine the time-resolved carrier density; to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions); and to show how the presence of the hot carrier distribution affects the lifetime of the states far below the Fermi energy.
View original: http://arxiv.org/abs/1304.2615

No comments:

Post a Comment