Friday, April 19, 2013

1304.5025 (Ruge Quhe et al.)

Tunable band gap in few-layer graphene by surface adsorption    [PDF]

Ruge Quhe, Jianhua Ma, Zesheng Zeng, Kechao Tang, Jiaxin Zheng, Yangyang Wang, Zeyuan Ni, Lu Wang, Zhengxiang Gao, Junjie Shi, Jing Lu
There is a tunable band gap in ABC-stacked few-layer graphene (FLG) via applying a vertical electric field, but the operation of FLG-based field effect transistor (FET) requires two gates to create a band gap and tune channel's conductance individually. Using first principle calculations, we propose an alternative scheme to open a band gap in ABC-stacked FLG namely via single-side adsorption. The band gap is generally proportional to the charge transfer density. The capability to open a band gap of metal adsorption decreases in this order: K/Al > Cu/Ag/Au > Pt. Moreover, we find that even the band gap of ABA-stacked FLG can be opened if the bond symmetry is broken. Finally, a single-gated FET based on Cu-adsorbed ABC-stacked trilayer graphene is simulated. A clear transmission gap is observed, which is comparable with the band gap. This renders metal-adsorbed FLG a promising channel in a single-gated FET device.
View original: http://arxiv.org/abs/1304.5025

No comments:

Post a Comment