H. Kurebayashi, Jairo Sinova, D. Fang, A. C. Irvine, J. Wunderlich, V. Novak, R. P. Campion, B. L. Gallagher, E. K. Vehstedt, L. P. Zarbo, K. Vyborny, A. J. Ferguson, T. Jungwirth
Recent observations of current-induced magnetization switching at ferromagnet/normal-conductor interfaces have important consequences for future magnetic memory technology. In one interpretation, the switching originates from carriers with spin-dependent scattering giving rise to a relativistic anti-damping spin-orbit torque (SOT) in structures with broken space-inversion symmetry. The alternative interpretation combines the relativistic spin Hall effect (SHE), making the normal-conductor an injector of a spin-current, with the non-relativistic spin-transfer torque (STT) in the ferromagnet. Remarkably, the SHE in these experiments originates from the Berry phase effect in the band structure of a clean crystal and the anti-damping STT is also based on a disorder-independent transfer of spin from carriers to magnetization. Here we report the observation of an anti-damping SOT stemming from an analogous Berry phase effect to the SHE. The SOT alone can therefore induce magnetization dynamics based on a scattering-independent principle. The ferromagnetic semiconductor (Ga,Mn)As we use has a broken space-inversion symmetry in the crystal. This allows us to consider a bare ferromagnetic element which eliminates by design any SHE related contribution to the spin torque. We provide an intuitive picture of the Berry phase origin of the anti-damping SOT and a microscopic modeling of measured data.
View original:
http://arxiv.org/abs/1306.1893
No comments:
Post a Comment