Monday, January 30, 2012

1111.0938 (David R. Andersen et al.)

Plasmon dispersion in semimetallic armchair graphene nanoribbons    [PDF]

David R. Andersen, Hassan Raza
The dispersion relations for plasmons in intrinsic and extrinsic semimetallic
armchair graphene nanoribbons (acGNR) are calculated in the random phase
approximation using the orthogonal p_z-orbital tight binding method. Our model
predicts new plasmons for acGNR of odd atomic widths N=5,11,17,... Our model
further predicts plasmons in acGNR of even atomic width N=2,8,14,... related to
those found using a Dirac continuum model, but with different quantitative
dispersion characteristics. We find that the dispersion of all plasmons in
semimetallic acGNR depends strongly on the localization of the p_z electronic
wavefunctions. We also find that overlap integrals for acGNR behave in a more
complex way than predicted by the Dirac continuum model, suggesting that these
plasmons will experience a small damping for all q not equal to 0. Plasmons in
extrinsic semimetallic acGNR with the chemical potential in the lowest
(highest) conduction (valence) band are found to have dispersion
characteristics nearly identical to their intrinsic counterparts, with
negligible differencs in dispersion arising from the slight differences in
overlap integrals for the interband and intraband transitions.
View original: http://arxiv.org/abs/1111.0938

No comments:

Post a Comment