Wednesday, June 27, 2012

1206.5994 (Klemens Mosshammer et al.)

Transport and semiclassical dynamics of coupled quantum dots interacting
with a local magnetic moment
   [PDF]

Klemens Mosshammer, Gerold Kiesslich, Tobias Brandes
We present a theory of magneto-transport through a system of two coupled electronic orbitals, where the electron spin interacts with a (large) local magnetic moment via an exchange interaction. For the physical realization of such a set-up we have in mind, for example, semiconductor quantum dots coupled to an ensemble of nuclear spins in the host material or molecular orbitals coupled to a local magnetic moment. Using a semiclassical approximation, we derive a set of Ehrenfest equations of motion for the electron density matrix and the mean value of the external spin (Landau equations): Due to the spin coupling they turn out to be nonlinear and, importantly, also coherences between electron states with different spin directions need to be considered. The electronic spin-polarized leads are implemented in form of a Lindblad-type dissipator in the infinite bias limit. We have solved this involved dynamical system numerically for various isotropic and anisotropic coupling schemes. For isotropic spin coupling and spin-polarized leads we study the effect of current-induced magnetization of the attached spin and compare this with a single quantum dot set-up. We further demonstrate that an anisotropic coupling can lead to a rich variety of parametric oscillations in the average current reflecting the complicated interplay between the Larmor precession of the external spin and the dissipative coherent dynamics of the electron spin.
View original: http://arxiv.org/abs/1206.5994

No comments:

Post a Comment