J. D. Ramsden, R. W. Godby
We calculate the exact Kohn-Sham potential that describes, within time-dependent density-functional theory, the propagation of an electron quasiparticle wavepacket of non-zero crystal momentum added to a ground-state model semiconductor. The potential is observed to have a highly nonlocal functional dependence on the charge density, in both space and time, giving rise to features entirely lacking in local or adiabatic approximations. The dependence of the non-equilibrium part of the Kohn-Sham electric field on the local current and charge density is identified as a key element of the correct Kohn-Sham functional.
View original:
http://arxiv.org/abs/1206.6035
No comments:
Post a Comment