K. Okamoto, K. Kuroda, H. Miyahara, K. Miyamoto, T. Okuda, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, K. Shimada, H. Namatame, M. Taniguchi, E. V. Chulkov, A. Kimura
Spin polarization of a topological surface state for GeBi$_2$Te$_4$, the newly discovered three-dimensional topological insulator, has been studied by means of the state of the art spin- and angle-resolved photoemission spectroscopy. It has been revealed that the disorder in the crystal has a minor effect on the surface state spin polarization and it exceeds 75% near the Dirac point in the bulk energy gap region ($\sim$180 meV). This new finding for GeBi$_{2}$Te$_{4}$ promises not only to realize a highly spin polarized surface isolated transport but to add new functionality to its thermoelectric and thermomagnetic properties.
View original:
http://arxiv.org/abs/1207.2088
No comments:
Post a Comment