Lukas Fricke, Michael Wulf, Bernd Kaestner, Vyacheslavs Kashcheyevs, Janis Timoshenko, Pavel Nazarov, Frank Hohls, Philipp Mirovsky, Brigitte Mackrodt, Ralf Dolata, Thomas Weimann, Klaus Pierz, Hans W. Schumacher
We report non-invasive single-charge detection of the full probability distribution $P_n$ of the initialization of a quantum dot with $n$ electrons for rapid decoupling from an electron reservoir. We analyze the data in the context of a model for sequential tunneling pinch-off, which has generic solutions corresponding to two opposing mechanisms. One limit considers sequential "freeze out" of an adiabatically evolving grand canonical distribution, the other one is an athermal limit equivalent to the solution of a generalized decay cascade model. We identify the athermal capturing mechanism in our sample, testifying to the high precision of our combined theoretical and experimental methods. The distinction between the capturing mechanisms allows to derive efficient experimental strategies for improving the initialization.
View original:
http://arxiv.org/abs/1211.1781
No comments:
Post a Comment