Canran Xu, Maxim G. Vavilov
We analyze the photovoltaic current through a double quantum dot system coupled to a high-quality driven microwave resonator. The conversion of photons in the resonator to electronic excitations produces a current flow even at zero bias across the leads of the double quantum dot system. We demonstrate that due to the quantum nature of the electromagnetic field in the resonator, the photovoltaic current exhibits a double peak dependence on the frequency $\omega$ of an external microwave source. The distance between the peaks is determined by the strength of interaction between photons in the resonator and electrons in the double quantum dot. The double peak structure disappears as strengths of relaxation processes increases, recovering a simple classical condition for maximal current when the microwave frequency is equal to the resonator frequency.
View original:
http://arxiv.org/abs/1301.3788
No comments:
Post a Comment