Friday, February 15, 2013

1302.3366 (Andrew N. Jordan et al.)

Powerful and efficient energy harvester with resonant-tunneling quantum
dots
   [PDF]

Andrew N. Jordan, Björn Sothmann, Rafael Sánchez, Markus Büttiker
We propose a nanoscale heat engine that utilizes the physics of resonant tunneling in quantum dots in order to transfer electrons only at specific energies. The nanoengine converts heat into electrical current in a multiterminal geometry which permits one to separate current and heat flows. By putting two quantum dots in series with a hot cavity, electrons that enter one lead are forced to gain a prescribed energy in order to exit the opposite lead, transporting a single electron charge. This condition yields an ideally efficient heat engine. The energy gain is a property of the composite system rather than of the individual dots. It is therefore tunable to optimize the power while keeping a much larger level spacing for the individual quantum dots. Despite the simplicity of the physical model, the optimized rectified current and power is larger than any other candidate nano-engine. The ability to scale the power by putting many such engines into a two-dimensional layered structure gives a paradigmatic system for harvesting thermal energy at the nanoscale. We demonstrate that the high power and efficiency of the layered structure persists even if the quantum dots exhibit some randomness.
View original: http://arxiv.org/abs/1302.3366

No comments:

Post a Comment