Friday, February 15, 2013

1302.3484 (Waltraut Wustmann et al.)

Parametric resonance in tunable superconducting cavities    [PDF]

Waltraut Wustmann, Vitaly Shumeiko
We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the SQUID attached to the cavity, and damping due to connection of the cavity to a transmission line are taken into the consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum statistical properties of the noise are addressed such as squeezing spectra, second order coherence, and two-mode entanglement.
View original: http://arxiv.org/abs/1302.3484

No comments:

Post a Comment