Tuesday, February 26, 2013

1302.5880 (L. Wang et al.)

Electron spin relaxation in bilayer graphene    [PDF]

L. Wang, M. W. Wu
Electron spin relaxation due to the D'yakonov-Perel' mechanism is investigated in bilayer graphene with only the lowest conduction band being relevant. The spin-orbit coupling is constructed from the symmetry group analysis with the parameters obtained by fitting to the numerical calculation according to the latest report by Konschuh {\it et al.} [Phys. Rev. B {\bf 85}, 115423 (2012)] from first principles. In contrast to single-layer graphene, the leading term of the out-of-plane component of the spin-orbit coupling in bilayer graphene shows a Zeeman-like term with opposite effective magnetic fields in the two valleys. This Zeeman-like term opens a spin relaxation channel in the presence of intervalley scattering. It is shown that the intervalley electron-phonon scattering, which has not been reported in the previous literature, strongly suppresses the in-plane spin relaxation time at high temperature whereas the intervalley short-range scattering plays an important role in the in-plane spin relaxation especially at low temperature. A marked nonmonotonic dependence of the in-plane spin relaxation time on temperature with a minimum of several hundred picoseconds is predicted in the absence of the short-range scatterers. This minimum is comparable to the experimental data. Moreover, a peak in the electron density dependence of the in-plane spin relaxation time at low temperature, which is very different from the one in semiconductors, is predicted. We also find a rapid decrease in the in-plane spin relaxation time with increasing initial spin polarization at low temperature, which is opposite to the situation in both semiconductors and single-layer graphene. ......(The remaining is cut due to the limit of space)
View original: http://arxiv.org/abs/1302.5880

No comments:

Post a Comment