Monday, March 18, 2013

1303.3755 (Lida Ansari et al.)

First Principle-based Analysis of Single-Walled Carbon Nanotube and
Silicon Nanowire Junctionless Transistors
   [PDF]

Lida Ansari, Baruch Feldman, Giorgos Fagas, Carlos Martinez Lacambra, Michael G. Haverty, Kelin J. Kuhn, Sadasivan Shankar, James C. Greer
Junctionless transistors made of silicon have previously been demonstrated experimentally and by simulations. Junctionless devices do not require fabricating an abrupt source-drain junction and thus can be easier to implement in aggressive geometries. In this paper, we explore a similar architecture for aggressively scaled devices with the channel consisting of doped carbon nanotubes (CNTs). Gate all around (GAA) field effect transistor (FET) structures are investigated for n- and p-type doping. Current-voltage characteristics and sub-threshold characteristics for a CNTbased junctionless FET is compared with a junctionless silicon nanowire (SiNW) FET with comparable dimensions. Despite the higher on-current of the CNT channels, the device characteristics are poorer compared to the silicon devices due to the smaller CNT band gap.
View original: http://arxiv.org/abs/1303.3755

No comments:

Post a Comment