K. Takeda, T. Obata, Y. Fukuoka, W. M. Akhtar, J. Kamioka, T. Kodera, S. Oda, S. Tarucha
We report on the effects of a global top gate on low-frequency noise in Schottky gate-defined quantum point contacts (QPCs) and quantum dots (QDs) in a modulation-doped Si/SiGe heterostructure. For a relatively large top gate voltage, the QPC current shows frequent switching with 1/f2 Lorentzian type charge noise. As the top gate voltage is decreased, the QPC pinch-off voltage becomes less negative, and the 1/f2 noise becomes rapidly suppressed in a homogeneous background 1/f noise. We apply this top-gating technique to double QDs to stabilize the charge state for the electron number down to zero.
View original:
http://arxiv.org/abs/1304.0064
No comments:
Post a Comment