1304.0573 (Hui Liu et al.)
Hui Liu, Shi-ning Zhu
Optical resonators are important devices that control the properties of light and manipulate light-matter interaction. Various optical resonators are designed and fabricated using different techniques. For example, in coupled resonator optical waveguides, light energy is transported to other resonators through near-field coupling. In recent years, magnetic optical resonators based on LC resonance have been realized in several metallic microstructures. Such devices possess stronger local resonance and lower radiation loss compared with electric optical resonators. This study provides an overall introduction on the latest progress in coupled magnetic resonator optical waveguide (CMROW). Various waveguides composed of different magnetic resonators are presented and Lagrangian formalism is used to describe the CMROW. Moreover, several interesting properties of CMROW, such as abnormal dispersions and slow light effects, are discussed and CMROW applications in nonlinear and quantum optics are shown. Future novel nanophotonic devices can be developed using CMROW.
View original:
http://arxiv.org/abs/1304.0573
No comments:
Post a Comment