Wednesday, June 19, 2013

1306.4002 (D. Ristè et al.)

Deterministic entanglement of superconducting qubits by parity
measurement and feedback
   [PDF]

D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Ya. M. Blanter, K. W. Lehnert, R. N. Schouten, L. DiCarlo
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying any initial quantum superposition and any entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects a register of quantum bits (qubits) to a state with an even or odd total number of excitations. Crucially, a parity meter must discern the two parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting, and superconducting qubits, realizing a parity meter creating entanglement for both even and odd measurement results has remained an outstanding challenge. We realize a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a 3D circuit quantum electrodynamics (cQED) architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 77% concurrence. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66% fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.
View original: http://arxiv.org/abs/1306.4002

No comments:

Post a Comment