Friday, June 28, 2013

1306.6363 (K. Korzekwa et al.)

Spin dynamics in p-doped semiconductor nanostructures subject to a
magnetic field tilted from the Voigt geometry

K. Korzekwa, C. Gradl, M. Kugler, S. Furthmeier, M. Griesbeck, M. Hirmer, D. Schuh, W. Wegscheider, T. Kuhn, C. Schüller, T. Korn, P. Machnikowski
We develop a theoretical description of the spin dynamics of resident holes in a p-doped semiconductor quantum well (QW) subject to a magnetic field tilted from the Voigt geometry. We find the expressions for the signals measured in time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA) experiments and study their behavior for a range of system parameters. We find that an inversion of the RSA peaks can occur for long hole spin dephasing times and tilted magnetic fields. We verify the validity of our theoretical findings by performing a series of TRFR and RSA experiments on a p-modulation doped GaAs/Al_{0.3}Ga_{0.7}As single QW and showing that our model can reproduce experimentally observed signals.
View original:

No comments:

Post a Comment