H. Ochoa, F. Guinea, V. I. Fal'ko
We propose a theory of spin relaxation of electrons and holes in two-dimensional hexagonal crystals such as atomic layers of transition metal dichalcogenides (MoS2, WSe2, etc). We show that even in intrinsically defectless crystals, their flexural deformations are able to generate spin relaxation of carriers. Based on symmetry analysis, we formulate a generic model for spin-lattice coupling between electrons and flexural deformations, and use it to determine temperature and material-dependent spin lifetimes in atomic crystals in ambient conditions.
View original:
http://arxiv.org/abs/1308.0928
No comments:
Post a Comment