Tai-Min Liu, Anh T. Ngo, Bryan Hemingway, Steven Herbert, Michael Melloch, Sergio E. Ulloa, Andrei Kogan
We report detailed transport measurements in a quantum dot in a spin-flip co-tunneling regime, and a quantitative comparison of the data to microscopic theory. The quantum dot is fabricated by lateral gating of a GaAs/AlGaAs heterostructure, and the conductance is measured in the presence of an in-plane Zeeman field. We focus on the ratio of the nonlinear conductance values at bias voltages exceeding the Zeeman threshold, a regime that permits a spin flip on the dot, to those below the Zeeman threshold, when the spin flip on the dot is energetically forbidden. The data obtained in three different odd-occupation dot states show good quantitative agreement with the theory with no adjustable parameters. We also compare the theoretical results to the predictions of a phenomenological form used previously for the analysis of non-linear co-tunneling conductance, specifically the determination of the heterostructure g-factor, and find good agreement between the two.
View original:
http://arxiv.org/abs/1110.5924
No comments:
Post a Comment