1307.6337 (G. Stefanucci et al.)
G. Stefanucci, S. Kurth
At zero temperature, the Landauer formalism combined with static density functional theory is able to correctly reproduce the Kondo plateau in the conductance of the Anderson impurity model provided that an exchange-correlation potential is used which correctly exhibits steps at integer occupation. Here we extend this recent finding to multi-level quantum dots described by the constant-interaction model. We derive the exact exchange-correlation potential in this model for the isolated dot and deduce an accurate approximation for the case when the dot is weakly coupled to two leads. We show that at zero temperature and for non-degenerate levels in the dot we correctly obtain the conductance plateau for any odd number of electrons on the dot. We also analyze the case when some of the levels of the dot are degenerate and again obtain good qualitative agreement with results obtained with alternative methods. As in the case of a single level, for temperatures larger than the Kondo temperature, the Kohn-Sham conductance fails to reproduce the typical Coulomb blockade peaks. This is attributed to {\em dynamical} exchange-correlation corrections to the conductance originating from time-dependent density functional theory.
View original:
http://arxiv.org/abs/1307.6337
No comments:
Post a Comment