Thursday, July 25, 2013

1307.6419 (Benoit Gaury et al.)

Numerical simulations of time resolved quantum electronics    [PDF]

Benoit Gaury, Joseph Weston, Matthieu Santin, Manuel Houzet, Christoph Groth, Xavier Waintal
This paper discusses the technical aspects - mathematical and numerical - associated with the numerical simulations of a mesoscopic system in the time domain (i.e. beyond the single frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time resolved observables in a general multiterminal system subject to an arbitrary time dependent perturbation (oscillating electrostatic gates, voltage pulses, time-vaying magnetic fields) The approach is mathematically equivalent to (i) the time dependent scattering formalism, (ii) the time resolved Non Equilibrium Green Function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrodinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time resolved observables (current, density. . .) and the (inelastic) scattering matrix are simply expressed in term of this wave function. We use our approach to develop a numerical technique for simulating time resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation capabilities of available approaches.
View original: http://arxiv.org/abs/1307.6419

No comments:

Post a Comment