Friday, July 5, 2013

1307.1142 (Wei-bo Gao et al.)

Quantum Teleportation from a Propagating Photon to a Solid-State Spin

Wei-bo Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, A. Imamoglu
The realization of a quantum interface between a propagating photon used for transmission of quantum information, and a stationary qubit used for storage and manipulation, has long been an outstanding goal in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation, which has attracted considerable interest not only as a versatile quantum-state-transfer method but also as a quantum computational primitive. Here, we experimentally demonstrate transfer of quantum information carried by a photonic qubit to a quantum dot spin qubit using quantum teleportation. In our experiment, a single photon in a superposition state of two colors -- a photonic qubit is generated using selective resonant excitation of a neutral quantum dot. We achieve an unprecedented degree of indistinguishability of single photons from different quantum dots by using local electric and magnetic field control. To teleport a photonic qubit, we generate an entangled spin-photon state in a second quantum dot located 5 meters away from the first and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. A coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after its coherence time is prolonged by an optical spin-echo pulse sequence. The demonstration of successful inter-conversion of photonic and semiconductor spin qubits constitute a major step towards the realization of on-chip quantum networks based on semiconductor nano-structures.
View original:

No comments:

Post a Comment